Structure of a yeast spliceosome at 3.6-angstrom resolution.

نویسندگان

  • Chuangye Yan
  • Jing Hang
  • Ruixue Wan
  • Min Huang
  • Catherine C L Wong
  • Yigong Shi
چکیده

Splicing of precursor messenger RNA (pre-mRNA) in yeast is executed by the spliceosome, which consists of five small nuclear ribonucleoproteins (snRNPs), NTC (nineteen complex), NTC-related proteins (NTR), and a number of associated enzymes and cofactors. Here, we report the three-dimensional structure of a Schizosaccharomyces pombe spliceosome at 3.6-angstrom resolution, revealed by means of single-particle cryogenic electron microscopy. This spliceosome contains U2 and U5 snRNPs, NTC, NTR, U6 small nuclear RNA, and an RNA intron lariat. The atomic model includes 10,574 amino acids from 37 proteins and four RNA molecules, with a combined molecular mass of approximately 1.3 megadaltons. Spp42 (Prp8 in Saccharomyces cerevisiae), the key protein component of the U5 snRNP, forms a central scaffold and anchors the catalytic center. Both the morphology and the placement of protein components appear to have evolved to facilitate the dynamic process of pre-mRNA splicing. Our near-atomic-resolution structure of a central spliceosome provides a molecular framework for mechanistic understanding of pre-mRNA splicing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.

Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for th...

متن کامل

Spliceosome structure and function.

Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation and composition of the spliceosome are...

متن کامل

Molecular architecture of the Saccharomyces cerevisiae activated spliceosome.

The activated spliceosome (Bact) is in a catalytically inactive state and is remodeled into a catalytically active machine by the RNA helicase Prp2, but the mechanism is unclear. Here, we describe a 3D electron cryomicroscopy structure of the Saccharomyces cerevisiae Bact complex at 5.8-angstrom resolution. Our model reveals that in Bact, the catalytic U2/U6 RNA-Prp8 ribonucleoprotein core is a...

متن کامل

Structure and Conformational Dynamics of the Human Spliceosomal Bact Complex.

The spliceosome is a highly dynamic macromolecular complex that precisely excises introns from pre-mRNA. Here we report the cryo-EM 3D structure of the human Bact spliceosome at 3.4 Å resolution. In the Bact state, the spliceosome is activated but not catalytically primed, so that it is functionally blocked prior to the first catalytic step of splicing. The spliceosomal core is similar to the y...

متن کامل

Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase.

Acetyl-coenzyme A carboxylases (ACCs) are required for the biosynthesis and oxidation of long-chain fatty acids. They are targets for therapeutics against obesity and diabetes, and several herbicides function by inhibiting their carboxyltransferase (CT) domain. We determined the crystal structure of the free enzyme and the coenzyme A complex of yeast CT at 2.7 angstrom resolution and found that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 349 6253  شماره 

صفحات  -

تاریخ انتشار 2015